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ABSTRACT

Replacement of one module of the battery charge

discharge unit (BCDU) of the International Space
Station (ISS) by a flywheel energy storage unit (FESU)

is under consideration. Integration of these two

dissimilar systems is likely to surface difficulties in
areas of system stability and fault protection. Other

issues that need to be addressed include flywheel charge

and discharge profiles and their effect on the ISS power

system as well as filter sizing for power Ability

purposes. This paper describes a SABER based

simulation to study these issues.

INTRODUCTION

Flywheel development in recent years makes the FESU

a potential weight saving alternative to nickel-hydrogen
battery systems of the ISS [1]. However, in a large-scale

power system distribution such as ISS, the replacement
of BCDU and battery module by a FESU poses an

uncertainty in the system interaction and system

stability. Therefore, the stability issues have to be

thoroughly investigated before the replacement can take

place. System modeling has been initiated to explore
specific issues with respect to applicability, stability,

system interaction, and the status of development.

The modeling process is to build and review the models
of BCDU, FESU, and associated functional

photovoltaic (PV) subsystem based on the latest ISS

schematics and flight hardware [2].

Copyright © 2000 by the American Institute of Aeronautics and
Astronautics Inc. No copyright is asserted in the United States under
Title 17,U.S. Code. The U.S. Government has a royalty-freelicense to
exerciseall rights under the copyright claimed herein for Governmental
Purposes. Allother rights are reservedby the copyright owner.

Since the FESU hardware is still in the development

stage, the system topology of FESU proposed in this

paper [3] is within the scope of FESU general guideline

[4]. The FESU is designed to match the dynamics

performance of the BCDU/battery assembly and the

mode of operation can therefore be summarize as follows:

Charge Mode: The flywheel control spins up the

flywheel by drawing energy from the PV subsystem

primary power bus. The maximum speed of the

flywheel is limited by the flywheel control.

. Charge Reduction and Discharge Modes: The

flywheel control responds to load demands to

regulate the primary power bus. The flywheel spins
down until it reaches an equivalent depth of

discharge (DOD) of 75%.

The three modes of operation, i.e., charge mode, charge
reduction mode and discharge mode, have been

evaluated in small-signal simulations to assess the

stability issues.

SYSTEM OVERVIEW

Figure 1 shows the interconnections of the PV subsystem,
which consists of solar array (SA), sequential shunt unit

(SSU), battery (BAT), two BCDUs and one FESU

connecting in parallel. As shown in Figure 1, the SSU

output, each of the two BCDUs, and FESU are connected

to the primary source bus via the direct current switching
unit (DCSU). The SSU provides voltage-regulated power

to the primary source bus during insolation periods. In the

same insolation period, batteries are charged from the

primary source bus via BCDUs, and the flywheel control
spins the flywheel up to the maximum speed. During the

eclipse periods, batteries and FESU are discharged

to provide voltage-regulated power to the primary
source bus.
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The BCDU uses the bilateral converter module to

perform the functions required by BCDU specification

RC 1807 [5]. Figure 2 shows the functional schematic of

BCDU. In Figure 2, bilateral switches are used for

bi-direction current flow, which is determined by the
modes of operation. When the charge mode is in place,

the buck topology is applied. While in the

discharge/charge reduction mode, the boost topology is

used. An average current mode control [6] has been

implemented in the BCDU control circuit. In the

discharge/charge reduction mode, voltage loop error
amplifier (E/A) and inner current loop E/A form the

control loop of BCDU. While in the charge mode, the

outer current loop E/A and inner current loop E/A, form

the control loop of BCDU. The parallel circuitry in

Figure 2 controls error signal flow to and from other
BCDUs. The mode detection switch in the parallel

circuitry is closed in the discharge/charge reduction

mode to transmit error signal to other BCDUs. On the

contrary, in the charge mode, the mode detection switch
is open to block the error signal transmitting, therefore,

each BCDU can regulate its own charge current. Since

the FESU is a replacement of the BAT/BCDU module,

the functional topology and system set points should be
compatible with the BCDU operation.

By using the nomenclature of Figure l, the three modes

of BCDU operation can therefore be summarized as
follows

1. Charge Mode

Z Icharge= ISA-- Iload

and

ISA - lload> 0

• SA & SSU provide and regulate bus power and
voltage

• BCDU conditions battery charge current

2. Charge Reduction Mode

]_ Ich_rg_@ schedule > ISA -- lload

Z Icharge @ charge reduction = Isg -- IJo_O

and

ISA - Iload> 0

• SSU unshunts all solar strings

• BCDU regulates the bus voltage

BCDU OPERATIONAL MODES

AND CHARACTERISTICS

The BCDU in discharge mode can provide up to 6.6

kW average or 9 kW peak power to the primary source
bus. Voltage at battery terminal in discharge mode can

range from 76 to 120 Vdc. The primary source bus

voltage generated by BCDU can range from 130 to 180

Vdc as determined by the Local Data Interface (LDI)

setpoint. While in the charge mode, BCDU is powered
by SSU to deliver 1 to 95A of charge current to the

battery as defined by LDI setpoint. Battery voltage can

vary from 66 to 126 Vdc as the SSU voltage is within
the range of 130 to 180 Vdc. The function of BCDU in

charge reduction mode is to regulate the primary source

bus when the solar array is capable of supplying enough

current to meet the load requirement of primary source
bus, but not sufficient current left to supply the preset

battery charge current. In this mode, BCDU starts to

regulate the primary source bus voltage by reducing the

charge current to be equal to (IsA-I_o_) as seen from
Figure 1. From the simulation of BCDU and SSU, it can

be noted that the SSU will unshunt all the solar strings

in the charge reduction mode. The same operation

topology can be applied to discharge mode except that

the Icharg e of Figure 1 will have the opposite direction of
current flow.

3. Discharge Mode

Icharge @ discharge = ISA-- Iload
and

ISA-- Iload< 0

• SSU unshunts all solar strings

• BCDU regulates the bus voltage

Fully understanding of the BCDU function is critical in
developing the control of FESU.

FESU BLOCK

Figure 3 shows the block diagram of the FESU

controller model. The controller provides a smooth

rotation of the FESU motor in response to a step change

of the motor speed command. Accordingly, the
controller will have to meet the operation requirements

and limits of the rotation speed, rotation acceleration,

the torque ripple of the motor, and the specification of
BCDU.

In Figure 3, the primary components are voltage/current

regulator, 3-phase power bridge (inverter), 3-phase
brushtess motor, flywheel and the associated electronics
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controlunit.Thecurrent/voltageregulatorregulatesthe
chargecurrentfeedingintotheFESUin sunlightmode
andthe primarybus voltagewith respectto the
dischargemode.Theinverterreceivestheregulated
currentfromthecurrentregulatorandsplitsthecurrent
intoa setof threephasemotorcurrents.Inthecharge
mode,the balancedthreephasesinusoidalmotor
currentswill thenprovidethepropercommutationto
thethreephasebrushlessmotor.Thecurrentregulatoris
controlledbyadigitalPIDalgorithminordertoreduce
thesteadystateerrorandstepresponseovershoot.The
resultedPIDcommandisusedasacontrolreferenceof
thecurrentregulator.Theinverteris controlledby a
sinewavecommutationlook-uptableto providethe
balancedthreephasesinusoidalcurrentto thethree
phasebrushlessmotor.Thecommutationthingof the
sinewavecommutationlookuptableis establishedby
sensingtheshaftpositionofthemotor.

SYSTEM INTERACTION

Figure 4 shows the top-level model schematic of ISS

primary power systems with one BCDU being replaced

by FESU. Two BCDUs and one FESU are in parallel
with the PV array/SSU to provide power to the two DC-
to-DC converter units (DDCUs) through the Direct

Current Switching Unit (DCSU). Interaction of the
FESU with the rest of the primary systems can be

assessed by comparing the source impedance Zs with

load impedance ZL at the interface of FESU as indicated

at point X of Figure 1. In discharge mode and with an

operating condition of Vbus = 173 volts and Pload =
12kW, the Bode plot in Figure 5 displays a significant

overlapping between Zs and ZL. The degree of system

stability at this operating condition needs to be further

investigated by studying the minor loop gain. The minor
loop gain, Tm, which is defined as Tm = ZS/ZL, gives

indication of the degree of system stability. To assure

overall system stability, the Nyquist plot of Tm must not

encircle the (-1,0) point in the complex plane and

always gives a phase margin greater than 30 degrees
[7]. When Figure 5 is converted to Nyquist plot, it

provides a phase margin of 56 degrees as indicated in

Figure 6.

Table 1 and Table 2 summarize the simulation results of

small signal stability analyses for both discharge and

charge mode operations at FESU interface. The
operations are stable with a minimum crossover phase

margin of 56 degrees for the cases simulated.

Table 1: Discharge Mode

Primary DDCU
Bus Loads

(Volt) (kW)

Z Crossover

Phase Margin (PM)

(degree)

130 1.6 72

130 12 61

173 1.6 65
173 12 56

178 12 56

Table 2: Charge Mode

Primary DDCU Charge
Bus Loads Current

(Volt) (kW) (amp)

Z Crossover

Phase Margin

(degree)

135 !.6 82 62

135 12.5 82 63

155 1.6 72 62

155 12.5 72 63
180 1.6 62 62

180 12.5 62 63

CONCLUSION

The system topology of FESU design has been

proposed. The modeling effort has been initiated to

make sure that the component level and system level

operations are realistic and stable. The primary power

system with a BCDU/battery module replaced by FESU
is stable for the operating conditions simulated.
However, more issues such as fault protection, current

sharing, power quality and overall system stability still
need to be addressed.
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